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Dirac Wave Equation in the de Sitter Universe

E. A. Notte Cuello!? and E. Capelas de Oliveiral
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We present and discuss the Dirac wave equation in the de Sitter universe. This
equation is obtained by factoring the second-order Casimir invariant operator
associated to the Fantappié—de Sitter group.

1. INTRODUCTION

The de Sitter space is the curved space-time which has been most studied
by quantum field theorists because it and the anti-de Sitter space are the
unique maximally symmetric curved spacetimes (Weinberg, 1972).

Some papers published many years ago discussed the Dirac wave equa-
tion in the de Sitter universe. Hara et al. (1954) and Ueno (1953, 1954)
studied the unified description of elementary particles, and Takeno (1952,
1953) the spherically symmetric problem in general relativity. Ikeda (1953)
gave a five-dimensional representation of the electromagnetic and electron
field equations in a curved space-time, which was then compared with the
formalism proposed by Dirac in the case of the de Sitter space-times. Goto
(1954) discussed an equation of Dirac—Fierz type in the de Sitter universe.
More recently Giirsey (1962) presented an introduction to the de Sitter group,
with a discussion of the structure of the group, commutation relations, invari-
ants, and the generators of the de Sitter group, which are rotation operators
in a five-dimensional Euclidean space. Giirsey (1963) presented the Casimir
operators for the de Sitter group and concluded by showing that a particle
in a de Sitter universe does not have a definite mass and spin, but definite
eigenvalues of the two Casimir invariant operators of the group. These authors
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did not discuss the equations obtained from the invariant Casimir operators.
This theme was the subject of studies by Bérner and Diirr (1969), who
discussed the de Sitter space-times and derived an eigenvalue equation for
the second-order Casimir invariant operator using the representations for
this group.

Now, an original way to study the cosmological problem is through the
theory of hyperspherical models of the universe proposed by Fantappié (1973)
and developed by Arcidiacono (1976, 1977, 1978, 1986, 1995). In this theory
it is necessary to distinguish absolute space-time (with constant curvature),
the effective seat of physical events, from the infinite relative space-times
(tangents) where each observer localizes and sees the phenomena. Then we
use a flat representation of the de Sitter universe on one of the tangent spaces.
Among the infinite representations we use the Beltrami (1865) geodesic
representation where the geodesics of the hyperspherical space-time corre-
spond to the straight lines of the flat tangent space-time of the observer’s
localization. It follows that the group of motions in itself of the de Sitter
universe is represented by the so-called Fantappié—de Sitter group, isomorphic
to the five-dimensional pseudo-rotation group, i.e., by projectives which
change the Cayley—Klein absolute (Arcidiacono, 1986, 1995).

Recently, Arcidiacono and Capelas de Oliveira (1991a) discussed the
Laplace equation and d’Alembert wave equation (Arcidiacono and Capelas
de Oliveira, 1991b,c) in the de Sitter universe, using the techniques proposed
by Fantappié and Arcidiacono, in terms of ultraspherical polynomials. More
recently, Capelas de Oliveira (1992) discussed the homogeneous d’ Alembert
generalized wave equation for the case of a physical situation involving a
small distance (a local problem) using the same technique. In another recent
paper (Notte Cuello and Capelas de Oliveira, 1995) we proposed a new
construction of the Casimir invariant operators for the Fantappié—de Sitter
group using the same techniques mentioned above. In that paper we obtained
the commutation relations and Casimir invariant operators for the Fantappié—
de Sitter group and in a second paper (Capelas de Oliveira and Notte Cuello,
1996) we discussed the Klein—Gordon wave equation. This equation has
been obtained from the second-order Casimir invariant operator. In the present
paper we obtain the Dirac wave equation in the de Sitter universe and discuss
its solutions. This equation is obtained by factoring the second-order Casimir
invariant operator into two linear factors in the angular moment operators.
Using original equations for a system of four partial differential equations
and solving this system, we obtain solutions in terms of spherical harmonics
with spin-weight.

This paper is organized as follows: in Section 2 we present some basic
concepts of spinors, spin-weights, and the spherical harmonic spinors; in
Section 3 we present a brief review of the technique proposed by Fantappié
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and Arcidiacono; in Section 4 we briefly discuss the Fantappié-de Sitter
group and the Casimir invariant operators; in Section 5 we obtain the Dirac
wave equation and in Section 6 we discuss and solve the Dirac equation in
a limiting case.

2. SPIN-WEIGHTS

It is known that a Pauli spinor s can be represented geometrically by
a flag (Torres Del Castillo, 1991; Maiorino et al., 1993a,b), the pole of which
is the vector (real) R = (R;, R,, R3) given by
R; = Yo 2D
where ' denote adjoint. The direction of the flag is given by the direction of
the real part of the vector M = (M, M,, M3) defined by

Mi = lJJTEO',-lIJ (2'2)
where T denotes transposition, the o; are the Pauli matrices, and
0 1
€= (_1 O) 2.3)
The components of a spinor can be parametrized by
_ /- COS B/2 e717
b= Jre ( sin 6/2 €2 24

although at & = 0 and 8 = 7 the parameters x and ¢ are not well defined.
Using equations (2.1) and (2.2), we get

R = (r sin 0 cos &, r sin O sin ¢, r cos 0) = ré,
M = re (&, + iéy) 2.5)
= r{(cos xéq + sin xég) + i(—sin xé, + cos xé)]

where é,, &, and é, are orthogonal vectors tangent to the spherical coordi-
nates lines.

For the purpose of studying functions defined on the sphere of unitary
radius, we introduce the spinor

_ (cos 0/2 e""’”z)

= | sin /2 €42 2.6)

which is obtained by setting r = 1 and x = O in equation (2.4), and another

spinor defined by
< sin /2 e~
[=ed= (-—cos /2 e""”) 2.7)
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The above spinors satisfy the relation
IA’ﬁA = IAEAB‘SB = ll,&Z - 12'8'1 =1 (28)

at each point of the sphere; 9 and / form a basis for spinor space and induce
a basis for vectors and the tensors of arbitrary rank (Torres Del Castillo,
1991; Maiorino et al., 1993a,b).

A quantity m has spin-weight s if under the transformation

¥ = &%y 2.9
it transforms according to
N = e (2.10)

Thus, the spinor 0 has spin-weight 1/2 and I’ = €0’ = ee ) = ¢=7[; |
has spin-weight —1/2. Also, if m has spin-weight s, then M has spin-weight
—s. Another way to say that is: m has spin-weight s if under a rotation of
the orthonormal basis {é,, &, é,} (generated from the spherical coordinates)
by an angle o about é,, it transforms according to equation (2.10). Since
under this rotation é, is invariant, &, has spin-weight zero, but é; and é,
transform according to cos aés — sin aéy, and sin aéy + cos aéy, respectively
and thus we cannot define the spin for é; and é,, i.e., “they have no spin-
weight.” But the combination &, * &, transforms according to

(cos aéy — sin aéy) * i(sin aéy + cos aédy) = e*(éy * iéy)

i.e., (& + iéy) and (é, — ié,) have spin-weight one and minus one, respectively.
Any vector field F in R? can be written as

F = Fé, + Foby + Fy, ‘ (2.11)

with the components F,, Fy, and F,, determined from F, = F-¢é,, Fy = F-é,,
and Fy, = F-é,, and given that é, and &, * é, have spin-weight zero, one,
and minus one, respectively, the combinations of the components of F, F, =
F-é,,and Fy = iFy, = F-(éy * iéy) have spin-weight zero, one, and minus
one, respectively.

Introducing

F,=Fy+iF, and F_=Fy—iF, (2.12)
in equation (2.11), we obtain
F=Fé +1F_(éy + iéy) + 1F. (éy — iéy) (2.13)

which expresses an arbitrary field vector F in terms of components that have
defined spin-weight.
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Now, we can introduce the operators @ and 3 (Newman and Penrose,
1966) that act on quantities m of spin-weight s according to the following
expressions:

9n = —sin’0 ( + i )(sm“ﬁ)n .14

b
3dm = —sin™'0 (6—6 - —l—e £>(sm39)ﬂ
where the quantities v and 9 have spin-weights + 1ands — 1, respectively.
Now using the identity V X (V X F) = V(V-F) — V?*F and that 93
= 99 when acting on quantities of spin-weight equals to zero (in general, if
7 has spin-weight 5, 39 — 43n = 2sm) (Newman and Penrose, 1966),
we obtain
19

1 1~
V¥ = |——=— (r*F + aa + F_ + —9F, |é
[arr28 ) Frt 590+ 53 *]e’

1 3? 1 1 = . s
+ 2 37 —— (rF-) + ——61’7‘F_ 2t"fFf (& + iéy)

1 & 1 1 N i
+ [2 e (rF,) + ?ﬂﬂF,, - ;iﬂF,:l(ee —iéy) (2.15)

Then we can obtain an additional simplification of the Laplacian of a
vector field, using the spherical harmonic with spin-weight (;Y},,), which for
integer values of s are functions given by (Newman and Penrose, 1966),

[g;g:] FYy, 0<s=<I
tim =9 (- 1){3 ki S;'] Y, -l=s=0 (2.16)
L0, sl >1

where Y,,, denote the usual spherical harmonics, which are functions with
spin-weight equal to zero. Since the operators 9 and @ change the spin-weight
by one and minus one, respectively, from the definition (2.16), we see that
sYi, has spin-weight s (3Y), = Yin)-

The definition (2.16) is equivalent to the relations

3 Yim) = [( — (U + s + DY (2.17)
3Ypm) = —[( + 90 = s + DY,
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and then we have
39(Ysm) = —( — s)I + s + 1),Y,, (2.18)
33(Ym) = —(U + )1 — s + 1),Y),

The numerical factors in (2.17) and (2.18) are normalization factors such
that, for a fixed value of s, the spherical harmonic with spin-weight (¥,
(wherel=|sl,Ist+1,...,m=—1, —{+1,...,]) define an orthogonal set

2w (7w
J J Ym0, ) ¥ (0, ) sin 6 $O &6 = 88y (2.19)

0 0

We note that we use the usual spherical harmonic Y}, that appears in equation
(2.16) normalized. Also, the set of the ,Y,,, with s fixed, is a complete set
in the sense that any function f(0, ¢) with spin-weight s can be expressed
as a linear combination as follows:

]

f= I; EIa,ng,m) (2.20)

m=—

where the coefficients a,, are constants given by

2w
Ay, = J f sY1a(0, &)f(0, d) sin 6 d do (2.21)

0 0

3. A BRIEF REVIEW OF THE METHOD

In this section we present a brief review of the method proposed by
Fantappié and Arcidiacono. Consider a five-dimensional space Es with the
homogeneous coordinates and the four-dimensional Beltrami coordinates in
the de Sitter space.

Therefore the five-dimensional homogeneous coordinates denoted by &,
(A =0,1,2, 3, 4) and the four-dimensional coordinates denoted by x, (n
=0, 1, 2, 3) are related by

£,
&
satisfying the relation of normalization £,&4 = R? where R is the radius of

the de Sitter universe.
Introducing the following notation for the Cayley—Klein absolute,

Xp =R 3.1

Al=1+a -y =1+a.0, 3.2)



Dirac Wave Equation in the de Sitter Universe 1237

where
1 1
a, = R Xo and v = R ct (3.3)
we can remove the £, coordinate and obtain
R X
& = 2 and §. = f (3.4

where A is given by (3.2).

To obtain the relation for the partial derivatives, we consider a function
©(£4), a homogeneous function of degree N in all five variable &,, and use
Euler’s theorem for homogeneous functions; we have

£4040(E1) = No(£4) (3.5)

where we have put 9, = 3/9¢,.
Using the definition of homogeneous functions we can write

RY (&1) = (€D 0(R, X, (3-6)

where the function on the right side of the above equation is a function
obtained from @(&,) with €& — R and §, — x,.

Taking the derivative of the above equation, first in relation to &, and
second in relation to §,, and introducing a function Y(x,) by

Uxw) = A7V0(R, X, (3.7
we obtain, respectively,
ag, @€y = (— — AXp ox )'Jl(xu) (3.82)
and
N
agﬂ o) = ( o T AR xu)!b(xu) (3.8b)

which is the link between the two formulations. Then we have solved the
problem of passing from the five-dimensional formulation &, to the spacetime
formulation ,,, i.e., in orthogonal Cartesian coordinates.

4. CASIMIR INVARIANT OPERATORS

In this section we summarize the properties of the Fantappié—de Sitter
group, giving a suitable representation of the respective generators and the
Casimir invariant operators.
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The Fantappié—de Sitter group, isomorphic to the five-dimensional
pseudo-rotation group, is the group of motions admitted by a cosmological
space with line elements given by

—ds? = AMdx,dx, = A(@dx)* + (dx2)® + (dxs)* + @xo)’]  (4.1)

where xo = ict and R?A? = R? + p? + ¥} and p?> = (x)* + (x2)* + ()%
This space can be embedded in a flat five-dimensional spacetime, with the
X the Beltrami projection from the “sphere” with equation

4
Ago BE =@+ EP+EP+HEP - )P =R

The coordinates are related by equation (3.4) and the differential operators
by equations (3.8a) and (3.8b).

The representation of the generators of the Fantappié—-de Sitter group
(Notte Cuello and Capelas de Oliveira, 1995) is given by the five-dimensional
angular momentum operators

. d 3\ _

Jag = lﬁ(gA s & 8&4) = Lag 4.2)
where A, B = 0, 1, 2, 3, 4. In terms of the Beltrami coordinates these are
given by

Lu.v = XuPv — XvPp (4.38)
and

1 1
T = E L4)‘ = Azp)‘ + F X}LLML (43b)

where v, p, A = 0, 1, 2, 3.

We note that in the above equations (where r,, are the analogues of the
momentum operators which represent the generators of the Poincaré group
acting as transformation group in Minkowski space-time) the linear momen-
tum p,, and the angular momentum L,,, mix in a unique tensor. This mixing
is due to the fact that transformations of the displacement are the analogues
of the translation and therefore the energy and the momentum operators (p,,
— —ihd,) are not conserved in relation to the Fantappié—de Sitter group;
however, the quantities (4.3b) are conserved.

Introducing the spherical coordinates and defining the operators

—ic

T, = temporal translations, with T, = (T)L‘m

T, = spatial translations,  with T, = (ILQ)LW‘
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N . ~i
V.. = center-of-mass inertial momentum,  with V, = (——)LopL
c

L, = spatial rotations, with L, =L,

where @, v, A = 1, 2, 3, we obtain the two invariant operators of the
Fantappié—de Sitter group (Casimir operators) using Ty, T, V,,, and L,
1

9, = —(T2 -3 T%) - %(1‘,2 - cVh = M? (4.42)

and
= —(L-T)? + e (TOL + 2T % V)? + 7 (L V)2 = N2 (4.4b)

where M2 and N? are constants.
We note that in the limit R — © we obtain

.g’z - m? and 5’4 - mzs(s +1)

where m and s are, respectively, the rest mass and the spin which characterize
the representations of the Poincaré group (Giirsey, 1963). Then the representa-
tions of the Fantappié—de Sitter group are labeled by eigenvalues of $, and
9,4 which generalize the usual mass and spin. Yet a particle in a Fantappié—de
Sitter universe does not have well-defined mass and spin, but only eigenvalues
of the ¥, and $, invariant operators.

5. FACTORIZATION OF THE SECOND-ORDER CASIMIR
INVARIANT OPERATOR

We can write the second-order Casimir invariant operator (4.4a) for the
Fantappié—de Sitter group using the ten operators L,, as
1L,sLyp = —R°M? 6D

where L, = —L,,and a, b = 0, 1, 2, 3, 4, where M?> = m? + 3ifim/R.
This formula is discussed in Goto (1954), where m is a real scalar. We
see that for R — © we have M2 — m?.
We recall from (4.2) that

Loy = &po — EoPa = ’ﬁ[g" 3, S 13 ]

Then we can write

3LayLay = (EE)(pP) — (EPY* + 3ih(EP) (5.2
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where

8&E=8L; =Pl E=En.... 8 P=(Po...,Pd)
Substituting (5.2) in (5.1) with M? given above, we get

(£5(pp) — (&p)* + 3ik(Ep) + R*m® + 3ikmR = 0 5.3)
Using the identity
GYaYoLar)? = —(EE)(pp) — 3ik(YE)(¥p) + (&) (5.4
where v = (g, . .., Y4) and the v, are 4 X 4 matrices that satisfy

YaYb + YoYa = 28ab
noting that

Ya¥oLap = 2(vE)(YP) — 2(Ep) (5.5)
and then substituting (5.4) and (5.5) in (5.3), we obtain
GYaYoLa)* — R'm?* + 3hiGzYaYsLap — mR) = 0 (5.6)
We can write two factors linear in the L,, operators,
GYaYsLar = RMYGYaYsLap + Rm + 3hi) = 0 5.7
or
NaYsLap — Rm = 0 (5.8a)
NaYsLap + Rm + 3hi = 0 (5.8b)

where (5.8a) is the same as postulated by Dirac (1935).

Before we discuss the solutions of equation (5.8a) using the method
proposed by Fantappié and Arcidiacono [equation (5.8b) is totally analogous],
we quickly show that it reduces to the usual Dirac equation in the limit R
—> o, We have

lim y,y\my = —ivipa
R

where ) is given in (4.3b) and the four matrices vy, = iyyy, are Hermitian
and satisfy the same commutation rules as the four vy, (Giirsey, 1962). Thus,
in the limit we obtain

o = im (5.9

where m? is the limit of M? for R — . This shows that equation (5.8a)
gives Dirac’s equation in flat space if M? has a real limit m?.
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Now, we can write equation (5.8a) in terms of the Beltrami coordinates
introducing the operators given above:

. . . i
{’Yo’Yllcvl + YovaicV, + YoY3icV3 — Yova - RTo + y1¥2Ls — v1v3la
+ V1VaRTy + ¥yysLy + ¥2¥4RT, + y3y4RT5 — Rm} =0 (5.10)

We obtain the explicit form for equation (5.10) in relativistic spherical coordi-
nates (¢, r, 9, ¢):

2 2
212 t+r + R ]
R R o
+ —_—
L P T
R |~ R
. t+R
—I0y (o)
r s
+ —_
t-R_ _, |9
r 8 ¢
[ iro, (t+Roy| 1 o Rm
+ . — ==L =0 (5.11
| (t — R)oy, iroy rsin®dd ik B -1y

where 0g = 06y, 0, = 0-éy, 0, = 0-€é,and I, I, are the 2 X 2 and 4 X
4 identity matrices, respectively, and we use for the vy, matrices

YN = YoOn and Y4 = YoY1Y2Y3
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with
0 0 —-i O
[0 & 00 0 -—i _
OL)\ [0_)\ O ], ’Y() i 0 0 0 Py A - 1, 2 3
0 i 0 O

We put ¥ = [“], where « and v are two-component spinors, and write
u=u9-—vlv=v_9_ — vl where the spinors ¥ and [ are introduced
in Section 2; we use the identities

du 1 ou 1 du

Vu=0,—+0p———+0
VU= O o T 9 sin 6 00 r 90

o-Vu-d) = (-};%(ru-))ﬁ + (-i— z'y‘u_)l (5.12)

o-Vul) = (% 6u+)ﬁ - <% ai (ru,,))

We also note from Section 2 that the following identities hold:

i 1

2797 88 2 30 2 b

agg0 = —1; o0 = —il; ad = oyl = —U; Oyl = iD
ol = -1l oY = sin 09 + cos 0/; g0l = sin 0/ — cos 69

(5.13)
(-1 0
=0 )

Then we can write equation (5.11), using the identities (5.12) and (5.13)
and using the fact that the set {9, —I} is linearly independent, as a system
of four partial differential equations:

3
¢

N~

where

R+ 2)2% (152, i p®=_¢rpls
R ot R/ ot or i

riov_  rtou_
Lo+ D o4 3, — (1 + lu_ + +R—_=
R aor TR ( bu (t )—v 0
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3 9
R(l +f-)ﬁ+r<1—i)—ﬁ+(t+R)3’:—(t+R)1av_
d ar r

R%| or R/ ot
r26V+ rtau+ 1
A A e N ¢ I +R)=v, = .
R or R ar du (1 + bu,(t R)rv+ 0 (5.19)
PA g PRl LRI L= €
R} ot R| ot ar P
r2ou-  rtov.  _ 1
to o= —B, (At k.~ (- R -u_ =
R or R or Vet W @ R)ru 0
t\ ou, £\ ov, du 1
1+ )R+ o) - ¢ - R -~ R - du_
r( R) ot ( R2) at ( ) or ( )rﬁu
r2ou, rtov, 1
+ L BT oy — (0 + kv, — (R -u, =
R or R or ﬁy (I1+kv,—@—R ru+ 0

where k = Rmlifi.
Now, equation (5.14) can be solved using the method of separation of

variables. Using the fact that the set of spherical harmonics with spin-weight
is complete, we look for a solution of the form

U = g(r, D_1pYm(®, )
4y = GO, 112Yjn(®, §) (5.15)
V- = f(r, O_1nY;m(®, &)
v = F(r, 012Yn(®, §)

where j = 1/2, —j = m = j, and we have used the fact that the components
u_ and v_ have spin-weight —1/2 and the components «, and v, have spin-

weight 1/2,
Introducing the functions (5.15) in (5.14) and using the relations

8- 12Xj(0, ) = (j + %) i Yin®, &)

51I2ij(97 (b) = _(J + %) —l/2ij(e9 ¢)
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we obtain the following system of partial differential equations:

£\og _ of | AL

+ +R+1 -2

R<1 R2) '(1 R) a TR R T R
~(j+Ne-c+m(i+ ) ir+a+ng-c+rls
J 2 J 2 r 8 r

£\ g t\ oF oF  rtdG

+ +ri1—=]—-

) ae ) e (e ) i
=(j+;)g+(t+R)(J+ ) ~fr+RG+ @+ R Lr
1) dg of _ r’\dg  rof
+-]==+ ~-R-=|2+22 )
(AR O FRl G s A

., 1Y 1 ., 1 1
=(-Rlj+3]-G-[j+zF+¢-R-g- QA +bf
2/ r 2 r
oG £\ oF G _ndF
+ —_— —— — R — — ] — — —

(l R) ot R(l R2) ot (’ R R) or  Ror
., IV .1 1
=@t—-BR|j+-]-g+|ji+zlf+¢—-R -G+ 1 + kF
2/ r 2 r

We note that solving this system implies a completely explicit solution for
the Dirac wave equation in the de Sitter universe.

6. A PARTICULAR CASE
In this section we solve the system (5.16) in the limit R — o, We note
that in this case that the system becomes

%‘%-%:%(%—j>8+:—;-14
%?—%—?-%(%+j)D+—"ﬁlC
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where we have put
A=g+G; B=F-Ff C=G-g D=F+f (6.2
Then the system (6.1a) is equivalent to

A _9'A | 20A 1 3\ 1 m?
L ) T ey
o ar*  ror (J 2)(1 2) a4 mA ©.3)

We put A(t, r) = A (t)A,(r) and obtain the ordinary differential equations

d?A
5 S+ N4, =0 (6.4a)
d’A, | 2dA, L1 3\ 1
+=—+ i+ )54, = .
—zt K3A, — i +3)E 4 0 (6.4b)

where \ is a constant and k3 = \* — m¥/h2.
The first of the above differential equations has the usual solutions
given by
Ai() = exp{xi\t} (6.5)
and a regular solution at the origin for the differential equation (6.4b) is a
multipie of the spherical Bessel function J;,(kor)

Ax(r) = ajiinlkor) (6.6)

where « is a constant.
Then, using (6.5) and (6.6), we get

A(t, ) = a exp{Xi\t} Ji1p(ker) 6.7

Introducing the above function in the second equation of the system
(6.1a), we obtain

%Itg + ?f{ B = a exp{*i\t} [kolj—llz(kor) + %Jj+l/2(k0r)i| (6.8)

To solve this partial differential equation we use the method of separation
of variables. Introducing the function B(t, r) as a product B(z, r) = B,()B,(r),
we obtain

dB
—J B, — Nexp{*i\t} = 0 (6.9)

mp
ifi
By(r) = [ kolj-1n(ker) + - J,-+uz(kor)] (6.10)

where d is a constant.
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Then from the above equations we obtain a regular solution at the origin
for B(t, r) as follows:

Bt r)= mTff—k%K exp{ xi\t} J;i_1p(kor) 6.11)
Analogously, we solve the system (6.1b) and we obtain the solutions
C(t, r) = a exp{ xivt} J;—1p(kor) 6.12)
Dt 1) = —20_ exp(2iyt) Jnthon) 6.13)
miih * iy /

where a and vy are constant.
Finally, using (5.15), we obtain the solution of the Dirac equation in
the flat space,

u, [A(t, NXTan ] + [C(t, r)XTj—vz] 6.14)

B(t, NXZ;_\p D(t, DX 1
Vs

where the functions A, B, C, and D are given by (6.7), (6.11), (6.12), and
(6.13) respectively and the X%;.,, are given by

1 —1/2ij] 1 [“-1/2ij]
Xtp == ; X" _ip == 6.15
j+12 2 [ [/2ij j—1/2 2 1/2ij ( )

Another particular case (stationary case) can be discussed in terms of
the Ei(p) and G(p) polynomials (Gomes and Capelas de Oliveira, 1996).
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