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Dirac Wave Equation in the de Sitter Universe 
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We present and discuss the Dirac wave equation in the de Sitter universe. This 
equation is obtained by factoring the second-order Casimir invariant operator 
associated to the Fantappir-de Sitter group. 

1. INTRODUCTION 

The de Sitter space is the curved space-time which has been most studied 
by quantum field theorists because it and the anti-de Sitter space are the 
unique maximally symmetric curved spacetimes (Weinberg, 1972). 

Some papers published many years ago discussed the Dirac wave equa- 
tion in the de Sitter universe. Hara et al. (1954) and Ueno (1953, 1954) 
studied the unified description of elementary particles, and Takeno (1952, 
1953) the spherically symmetric problem in general relativity. Ikeda (1953) 
gave a five-dimensional representation of the electromagnetic and electron 
field equations in a curved space-time, which was then compared with the 
formalism proposed by Dirac in the case of the de Sitter space-times. Goto 
(1954) discussed an equation of Dirac-Fierz type in the de Sitter universe. 
More recently Gtirsey (1962) presented an introduction to the de Sitter group, 
with a discussion of the structure of the group, commutation relations, invari- 
ants, and the generators of the de Sitter group, which are rotation operators 
in a five-dimensional Euclidean space. G0rsey (1963) presented the Casimir 
operators for the de Sitter group and concluded by showing that a particle 
in a de Sitter universe does not have a definite mass and spin, but definite 
eigenvalues of the two Casimir invariant operators of the group. These authors 
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did not discuss the equations obtained from the invariant Casimir operators. 
This theme was the subject of studies by Brrner and Dtirr (1969), who 
discussed the de Sitter space-times and derived an eigenvalue equation for 
the second-order Casimir invariant operator using the representations for 
this group. 

Now, an original way to study the cosmological problem is through the 
theory of hyperspherical models of the universe proposed by Fantappi6 (1973) 
and developed by Arcidiacono (1976, 1977, 1978, 1986, 1995). In this theory 
it is necessary to distinguish absolute space-time (with constant curvature), 
the effective seat of physical events, from the infinite relative space-times 
(tangents) where each observer localizes and sees the phenomena. Then we 
use a flat representation of the de Sitter universe on one of the tangent spaces. 
Among the infinite representations we use the Beltrami (1865) geodesic 
representation where the geodesics of the hyperspherical space-time corre- 
spond to the straight lines of the flat tangent space-time of the observer's 
localization. It follows that the group of motions in itself of the de Sitter 
universe is represented by the so-called Fantappi6-de Sitter group, isomorphic 
to the five-dimensional pseudo-rotation group, i.e., by projectives which 
change the Cayley-Klein absolute (Arcidiacono, 1986, 1995). 

Recently, Arcidiacono and Capelas de Oliveira (1991a) discussed the 
Laplace equation and d'Alembert wave equation (Arcidiacono and Capelas 
de Oliveira, 199 l b,c) in the de Sitter universe, using the techniques proposed 
by Fantappi6 and Arcidiacono, in terms of ultraspherical polynomials, More 
recently, Capelas de Oliveira (1992) discussed the homogeneous d'Alembert 
generalized wave equation for the case of a physical situation involving a 
small distance (a local problem) using the same technique. In another recent 
paper (Notte Cuello and Capelas de Oliveira, 1995) we proposed a new 
construction of the Casimir invariant operators for the Fantappir-de Sitter 
group using the same techniques mentioned above. In that paper we obtained 
the commutation relations and Casimir invariant operators for the FantappiE- 
de Sitter group and in a second paper (Capelas de Oliveira and Notte Cuello, 
1996) we discussed the Klein-Gordon wave equation. This equation has 
been obtained from the second-order Casimir invariant operator. In the present 
paper we obtain the Dirac wave equation in the de Sitter universe and discuss 
its solutions. This equation is obtained by factoring the second-order Casimir 
invariant operator into two linear factors in the angular moment operators. 
Using original equations for a system o f f  our partial differential equations 
and solving this system, we obtain solutions in terms of spherical harmonics 
with spin-weight. 

This paper is organized as follows: in Section 2 we present some basic 
concepts of spinors, spin-weights, and the spherical harmonic spinors; in 
Section 3 we present a brief review of the technique proposed by Fantappi6 
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and Arcidiacono; in Section 4 we briefly discuss the Fantappi6-de Sitter 
group and the Casimir invariant operators; in Section 5 we obtain the Dirac 
wave equation and in Section 6 we discuss and solve the Dirac equation in 
a limiting case. 

2. SPIN-WEIGHTS 

It is known that a Pauli spinor ~ can be represented geometrically by 
a flag (Tortes Del Castillo, 1991; Maiorino et al., 1993a, b), the pole of which 
is the vector (real) R = (R1, R2, R3) given by 

R i = I~tO' i~J  (2.1) 

where ,  denote adjoint. The direction of the flag is given by the direction of 
the real part of the vector M = (M1, M2, M3) defined by 

Mi = *Tr (2.2) 

where T denotes transposition, the ~ri are the Pauli matrices, and 

.:(el a) 
The components of a spinor can be parametrized by 

F a/2/'cos 0/2 e-i*/2~ 
�9 = ~/re- ~ sin 0/2 e i~'/2 ) (2.4) 

although at 0 = 0 and 0 = 'rr the parameters x and dp are not well defined. 
Using equations (2.1) and (2.2), we get 

R = (r sin 0 cos d~, r sin 0 sin ~b, r cos 0) = rdr 

M = re-~(~o + i ~ )  (2.5) 

= r[(cos xd0 + sin x~,) + / ( - s in  x~, + cos x~,)] 

where ~r, e0, and ~, are orthogonal vectors tangent to the spherical coordi- 
nates lines. 

For the purpose of studying functions defined on the sphere of unitary 
radius, we introduce the spinor 

(cos 012 e-i~bl2~ 
a~ ---- \ sin 012 e i+12 ] (2.6) 

which is obtained by setting r = 1 and x = 0 in equation (2.4), and another 
spinor defined by 

sin 0/2 e -i~'/2 
l -- r = - c o s  0/2 e i~'/2] (2.7) 
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The above spinors satisfy the relation 

IaOA = IAEABO B = / 1 0 2  - -  / 2 0 1  = 1 (2.8) 

at each point of  the sphere; 0 and l form a basis for spinor space and induce 
a basis for vectors and the tensors of arbitrary rank (Torres Del Castillo, 
1991; Maiorino et al., 1993a,b). 

A quantity "q has spin-weight s if under the transformation 

0 '  = eia/20 (2.9) 

it transforms according to 

"q' = e/~'q (2.10) 

Thus, the spinor 0 has spin-weight 1/2 and l' = r = r = e-i~2l; l 
has spin-weight - 1/2. Also, if "q has spin-weight s, then ~ has spin-weight 
- s .  Another way to say that is: "q has spin-weight s if under a rotation of 
the orthonormal basis { ~r, ~0, #* } (generated from the spherical coordinates) 
by an angle ot about ~r, it transforms according" to equation (2.10). Since 
under this rotation ~r is invariant, ~r has spin-weight zero, but ~0 and ~, 
transform according to cos a~0 - sin ot~, and sin old0 + cos a~, ,  respectively 
and thus we cannot define the spin for ~, and d,, i.e., "they have no spin- 
weight." But the combination ~0 --+ ~, transforms according to 

(cos ot~0 - sin ot~,) _ / ( s i n  ot~0 + cos ot~,) = e+-i~(~o +_ i~,)  

i.e., (~0 + i#,) and (e0 - i~,) have spin-weight one and minus one, respectively. 
Any vector field F in R 3 can be written as 

F = F ,~  + F0~0 + F ,~ ,  (2.11) 

with the components F~, F0, and F ,  determined from Fr = F" ~r, FO = F" e0, 
and F~, = F.~ , ,  and given that er and e0 - e ,  have spin-weight zero, one, 
and minus one, respectively, the combinations of the components of  F, F~ = 
F .  ~r, and Fo -4- i F ,  = F" (co +- i~,) have spin-weight zero, one, and minus 
one, respectively. 

Introducing 

F+ - Fo + i F ,  and F_ - -  Fo - i F ,  (2 .12)  

in equation (2.11), we obtain 

F : Ere r + 1F_(e. 0 + i~.,) + �89 - i~,) (2.13) 

which expresses an arbitrary field vector F in terms of  components that have 
defined spin-weight. 
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Now, we can introduce the operators 0 and 0 (Newman and Penrose, 
1966) that act on quantities "q of spin-weight s according to the following 
expressions: 

O'q-----sinS0 ( O  + i ~) (s in-S0) 'q  (2.14) 

0~1 -- -s in-S0 sin 0 (sinS0)~i 

where the quantities 0~1 and 0~1 have spin-weight s + 1 and s - 1, respectively. 
Now using the identity V • (V x F)  = V(V-F)  - V2F and that 0 0  

= 00  when acting on quantities of  spin-weight equals to zero (in general, if 
~1 has spin-weight s, 00~1 - 0 ~  = 2s~) (Newman and Penrose, 1966), 
we obtain 

VZF = Or - -  ~-- (r2Fr) + OOFr + OF_ + OF+ O r 
r 2 Or -~ 

+ L2 r ~ 2 ~r  2 0 0 F _  - (eo + i~,) 

I-- '  ~ (r"+' + ' 5] + L2r Or 2 ~r  2 OOF+ - OF, (~o - i~,)  (2.15) 

Then we can obtain an additional simplification of  the Laplacian of  a 
vector field, using the spherical harmonic with spin-weight (sYtm), which for 
integer values of s are functions given by (Newman and Penrose, 1966), 

1/2 

u s)!J ~ " ~ '  0 --< s <- l 

[ ~ ]  1/2 (2.16) 
sYlm = (__1) ~ (l + S)[ ~_SYlm" --I <-- S <-- 0 

O, Isl > 1 

where Ytm denote the usual spherical harmonics, which are functions with 
spin-weight equal to zero. Since the operators 0 and 0 change the spin-weight 
by one and minus one, respectively, from the definition (2.16), we see that 
sYtm has spin-weight s (OYlm =- Ytm). 

The definition (2.16) is equivalent to the relations 

O(sYlm ) [(1 -- s)(l + S + u2 = 1)] s+lY lm (2.17) 

O(,Yo~) = -[(1 + s)(l - s + 1)]]/-21Ylm 
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and then we have 

Oft(sYlm) = --(l -- s)(l + S + 1),Yl, n (2.18) 

O~(,Vlm ) = - (1  + s)(l - s + 1),Yt,n 

The numerical factors in (2.17) and (2.18) are normalization factors such 
that, for a fixed value of s, the spherical harmonic with spin-weight sYlm 
(where l = Is[, Isl + 1 . . . . .  m = - l ,  --! + 1 . . . . .  l) define an orthogonal set 

fi2~r [Or S~'lm(O, f~) sYl,m,(O, c~) sin O dpO C~O = gll,Smm , (2.19) 

We note that we use the usual spherical harmonic Ytm that appears in equation 
(2.16) normalized. Also, the set of the sYtm, with s fixed, is a complete set 
in the sense that any function f(0, ~b) with spin-weight s can be expressed 
as a linear combination as follows: 

f =  ~ alm(sYlm ) (2.20) 
l=ls[ m=--I 

where the coefficients aim are constants given by 

;?(/ arm = su ~)f(O, 6) sin 0 dO d~ (2.21) 

3. A BRIEF REVIEW OF THE METHOD 

In this section we present a brief review of the method proposed by 
Fantappi6 and Arcidiacono. Consider a five-dimensional space E5 with the 
homogeneous coordinates and the four-dimensional Beltrami coordinates in 
the de Sitter space. 

Therefore the five-dimensional homogeneous coordinates denoted by 
(A = 0, 1, 2, 3, 4) and the four-dimensional coordinates denoted by X, (I x 
= 0, 1, 2, 3) are related by 

• = R ~4 ~ (3.1) 

satisfying the relation of normalization ~ = R 2, where R is the radius of 
the de Sitter universe. 

Introducing the following notation for the Cayley-Klein absolute, 

A 2 = 1 + ot 2 -  ,~/2= 1 + tx~ot~ (3.2) 
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where 

1 1 
et. = -~ X~ and ~ = -R ct (3.3) 

we can remove the ~ coordinate and obtain 

R and 6~ X~ (3.4) 

where A is given by (3.2). 
To obtain the relation for the partial derivatives, we consider a function 

q~(~A), a homogeneous function of degree N in all five variable 6A, and use 
Euler's theorem for homogeneous functions; we have 

~0Aq~(~) = Nq~(~) (3.5) 

where we have put 0a -- OIO~. 
Using the definition of homogeneous functions we can write 

R s ~p(~) = (~)~p(R, • (3.6) 

where the function on the right side of the above equation is a function 
obtained from qo(~) with 64 ~ R and 6. --> X.. 

Taking the derivative of the above equation, first in relation to ~ and 
second in relation to 6., and introducing a function #(X~) by 

@(X~) = A-Nq~( R, X~) (3.7) 

we obtain, respectively, 

and 

r ~-- ~x~),(x~) O~q~(~)=(N-Ax. (3.8a) 

0 ( O + )~(Xr (3.8b) 
- -  ax~ ~ x~ 

which is the link between the two formulations. Then we have solved the 
problem of passing from the five-dimensional formulation 63 to the spacetime 
formulation X~, i.e., in orthogonal Cartesian coordinates. 

4. CASIMIR INVARIANT OPERATORS 

In this section we summarize the properties of the Fantappi6-de Sitter 
group, giving a suitable representation of the respective generators and the 
Casimir invariant operators. 
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The Fantappi6-de Sitter group, isomorphic to the five-dimensional 
pseudo-rotation group, is the group of motions admitted by a cosmological 
space with line elements given by 

- d s  2 = A2dx~dxIL  = A 2 [ ( d x I )  2 + (dx2)  2 + (dx3)  2 + (dXo) 2] (4.1) 

where X0 = ict and R2A 2 = R 2 + p2 + X 2 and p2 = (X02 + (X2)2 + (X3)2. 
This space can be embedded in a fiat five-dimensional spacetime, with the 
• the Beltrami projection from the "sphere" with equation 

4 
E ~:~A~,A = (~l)  2 "~- (~2) 2 + (~3) 2 + (~4) 2 --  (~0) 2 = R2 

A=0 

The coordinates are related by equation (3.4) and the differential operators 
by equations (3.8a) and (3.8b). 

The representation of the generators of the Fantappi6-de Sitter group 
(Notte Cuello and Capelas de Oliveira, 1995) is given by the five-dimensional 
angular momentum operators 

Jan = - i h  ~t -~a - ~a = LAa (4.2) 

where A, B = 0, l, 2, 3, 4. In terms of the Beltrami coordinates these are 
given by 

L.,, = Xo.P,, - X,,P~ (4.3a) 

and 

1 1 
TCX = ~ L4~, = A2px + - ~  x , L x ,  (4.3b) 

where v, i~, k = 0, l, 2, 3. 
We note that in the above equations (where -tr~ are the analogues of the 

momentum operators which represent the generators of the Poincar6 group 
acting as transformation group in Minkowski space-time) the linear momen- 
tum p~ and the angular momentum L~ mix in a unique tensor. This mixing 
is due to the fact that transformations of the displacement are the analogues 
of the translation and therefore the energy and the momentum operators (p~ 
--) - ihO~)  are not conserved in relation to the Fantappi6-de Sitter group; 
however, the quantities (4.3b) are conserved. 

Introducing the spherical coordinates and defining the operators 

To = temporal translations, 

T~ = spatial translations, 

- i c  
with  To ~- (--R--)L4o 

(') with T~--- ~ L~  



Dirac Wave Equation in the de Sitter Universe 1239 

mass,no ialmomentum with 

L~ = spatial rotations, with L~ ---- L~x 

where Ix, v, h = 1, 2, 3, we obtain the two invariant operators of the 
Fantappi6-de Sitter group (Casimir operators) using To, T~, V~, and L~: 

`92 = - T2 - ~ - ~-~ (L 2 - c2V 2) = M 2 (4.4a) 

and 

l C 2 
`94 "~- - ( L ' T )  2 + ~ (ToL + c2T • V) 2 q- ~ ( L ' V )  2 = N 2 (4.4b) 

where M 2 and N 2 are constants. 
We note that in the limit R ---> oo we obtain 

`92 -'> m2 and `94 ---> m2s(s + 1) 

where m and s are, respectively, the rest mass and the spin which characterize 
the representations of the Poincar6 group (Gtirsey, 1963). Then the representa- 
tions of the Fantappi6-de Sitter group are labeled by eigenvalues of `92 and 
`94 which generalize the usual mass and spin. Yet a particle in a Fantappi6-de 
Sitter universe does not have well-defined mass and spin, but only eigenvalues 
of the ,92 and `94 invariant operators. 

5. FACTORIZATION OF T H E  SECOND-ORDER CA S IMIR 
INVARIANT O P E R A T O R  

We can write the second-order Casimir invariant operator (4.4a) for the 
Fantappi~-de Sitter group using the ten operators Lob as 

�89 = - R Z M  2 (5.1) 

where Lab = --Lba and a, b = 0, 1, 2, 3, 4, where M 2 = m 2 + 3ihmlR. 
This formula is discussed in Goto (1954), where m is a real scalar. We 

see that for R --~ ~ we have M 2 ---) m z. 
We recall from (4.2) that 

Lab = ~aPb - -  ~bPa = - i h  ~'-O-~b - ~b 

Then we can write 

�89 = (~O(PP) - (~p)Z + 3ih(~P) (5.2) 
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where 

Substituting (5.2) in (5.1) with M 2 given above, we get 

(~6)(PP) - (rP) 2 + 3ih(~o) + R2m 2 + 3 ihmR = 0 

Using the identity 

(�89 2 = --(~6)(PP) -- 3ih(~6)('yp) + (~o) 2 

where ~/ = ("/0 . . . . .  ~/4) and the % are 4 • 4 matrices that satisfy 

"Ya'~b -~- "~b'~a ~-- 2~ab 

noting that 

P P  = P a P a ;  6 ~--- (60 . . . . .  64); P = (P0  . . . . .  P4)  

(5.3) 

(5.4) 

�89 - -  R m  = 0 (5.8a) 

�89 + R m  + 3hi  = 0 (5.8b) 

where (5.8a) is the same as postulated by Dirac (1935). 
Before we discuss the solutions of equation (5.8a) using the method 

proposed by Fantappi6 and Arcidiacono [equation (5.8b) is totally analogous], 
we quickly show that it reduces to the usual Dirac equation in the limit R 

~. We have 

lim %',/x'rr x = -i~l~p~ 
R----)oo 

where "rra is given in (4.3b) and the four matrices ~/~ = i"/0~/x are Hermitian 
and satisfy the same commutation rules as the four ~/x (Gtirsey, 1962). Thus, 
in the limit we obtain 

~pxd~ = imd~ (5.9) 

where m 2 is the limit of M 2 for R ---) ~. This shows that equation (5.8a) 
gives Dirac's equation in flat space if M 2 has a real limit m 2. 

o r  

~a~loLab = 2(~/6)(~/p) -- 2 ( ~ )  (5.5) 

and then substituting (5.4) and (5.5) in (5.3), we obtain 

(l'ya'yoLao)2 - RZm 2 + 3hi(l'ya'yoLao - mR) = 0 (5.6) 

We can write two factors linear in the Lab operators, 

( l ~ a ' ~ b t a b  - -  Rm)(�89 + R m  + 3hi) = 0 (5.7) 
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Now, we can write equation (5.8a) in terms of the Beltrami coordinates 
introducing the operators given above: 

i 
"YO'yliCVl + ~lo~12icV2 + ~lo'y3icV3 - '~/0"~4 C RTo + "yl~/2L3 -- 'Yl~3L2 

+~I~4RTI + ~2~3L1 + ~2~4RT2 +~3~4RT3 - R m }  = 0 (5.10) 

We obtain the explicit form for equation (5.10) in relativistic spherical coordi- 
nates (t, r, 0, dp): 

R(1 + ~2)/2 - ~ 1 -  R)o-r 

-~ l  + R)o'r -R(1 + ~2)12 
Ot 

+ 

rt I 

(r2+R2) 
t R O'r 

t + m 
r 2 + R2) 

R O'r 

- r t  

R 

Or 

+ 

t kr+ t + R 
- -  (YO 

r 

t - R  
- -  ~o - i ( r ,  

r 

O0 

ircro (t + R)o-,] 1 0t~ R m 140 = 0 (5.11) 
+ (t - R)(r+ ircro j r sin 0 0+ ih 

where ~r0 - o-. Eo, or+ - o-.E+, o" r ~--- O'" e r  and 12, 14 are the 2 • 2 and 4 • 
4 identity matrices, respectively, and we use for the % matrices 

~x = ~0ax and ~4 = ~0~1~2~3 
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with 

i 0 - i  0 J [ 0  ] cr x 0 0 0 - i  
e~x= ~/o= k =  1 ,2 ,3  o'x 0 ' 0 0 0 ' 

i 0 0 

We put ~ = [~], where u and v are two-component spinors, and write 
u = u_O - v+l, v = v_O_ - v+l, where the spinors O and l are introduced 
in Section 2; we use the identities 

Ou 1 Ou 
o'. Vu = O" r ~ r r  -}- O'~b r sin 00~b + ~o - - -  

~ ' V ( u - O ) = ( l ~ r ( r U - ) ) o + ( l o u - ) l  

~ ' V ( u + l ) = ( l o u + ) a ~ - ( ~ r ( r U + ) ) l  

1 0 u  

r O0 

(5.12) 

We also note from Section 2 that the following identities hold: 

O0 i O0 -- 1 Ol 
- -  = ~ 8 0 ;  - l; 
O~b O0 2 O0 

croO = - l ;  tr+O = - i l ;  ~ r  0 ~-- 1.~; 

trrl = -1; O'o~a~ = sin O0 + cos 01; 

_ 1 O; Ol _ 2 8 l  

2 

if01 = --O; cr+l = iO 

cr081 = sin 0l - cos 00 
(5,13) 

where 

0) 
Then we can write equation (5.11), using the identities (5.12) and (5.13) 

and using the fact that the set {a~, - l }  is linearly independent, as a system 
of four partial differential equations: 

R 1+~-~  - - ~ - -  1 -  - - ~ + ( t + R ) - ~ r  - ( t + R ) - O V + r  

+ - - - -  r 20v_ 

R Or 
+ rt Ou- + ~u. (1 + k)u_ + (t + R) 1 

_ _ - v _ = O  
R Or r 
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R 1 + - ~  -~r + I - - ~ ] - - ~ +  ( t + R ) - ~ r -  ( t + g )  lrOv_ 

r 2 Or+ + rt Ou+ Ou_ (1 + k)u+(t + R) 1 
_ _  _ - v + = O  

R Or R Or r 
(5.14) 

(  )ov_ o._ 
1 + - ~ + R  1 +-~ - ~ -  ( t - R ) ~ r  + (t-R)-Ou+ 

r 

r 2 Ou_ + - - - - +  
R Or 

rt Ov- Ov+ + (1 + k)v_ - (t - R) l u _  = 0  
R Or r 

1 + bt - R  1 +-~ ~ -  ( t - R ) ~ r  - ( t - R )  lrOu_ 

+ r 2 0u+ rt 0v+ Ov_ (1 + k)v+ (t R) 1 . . . .  U+ ~..~_ 0 
R Or R Or r 

where k = Rmlih. 
Now, equation (5.14) can be solved using the method of separation of 

variables. Using the fact that the set of spherical harmonics with spin-weight 
is complete, we look for a solution of the form 

U-- ~ g ( r ,  t ) _ l / 2 g j m ( O ,  Iqb) 

u+ -- G(r, t)lcYjm(O, ~P) (5.15) 

v _  - f ( r ,  0-.2Vim(0, +) 

v§  - F ( r ,  O,,2~',n(O, +) 

where j ----- 1/2, - j  --< m --< j, and we have used the fact that the components 
u_ and v_ have spin-weight -1 /2  and the components u+ and v§ have spin- 
weight 1/2. 

Introducing the functions (5.15) in (5.14) and using the relations 

0' ,O',m'0 
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we obtain the following system of partial differential equations: 

( tZ)ag ~ R) ( r_~)Ofr tag  
R 1 + ~  --~- 1 -  -~+ t + R +  --+----Or R Or 

(, ~) (, = + g + (t + R) 

r(1 R)-0-t 

+ ~ )  l f + ( l r  + k ) G + ( t + R ) l F r  

~ -  l - R -  Or -i O--; 

= ( t - R ) ( j + I ) I G - ( J + l )  F + ( t - R )  +k) f  

( ~)oo ( ~)o~( r;)oo .o~ 
r l +  N - - R I + N  N - "  t - R -  ~ Ror 

= - - g  + + + ( t - R )  I G +  (1 +k)F 
r r 

We note that solving this system implies a completely explicit solution for 
the Dirac wave equation in the de Sitter universe. 

6. A PARTICULAR CASE 
In this section we solve the system (5.16) in the limit R --> ~. We note 

that in this case that the system becomes 

- ~ A  Ot Or r ih 

0~ ~r ~ rl(~ + j ~  m~i~ ~6,a, 
0C ~O ,(~+j)o+m 
Ot Or r -~ C 

Ot Or r ~ D (6.1b) 



Dirae Wave Equation in the de Sitter Universe 1245 

where we have put 

A = g  + G; B = F - f ;  C =  G -  g; D = F + f  (6.2) 

Then the system (6.1a) is equivalent to 

02,4 0 2 A + 2 0 A  ( j + ~ ) ( j + 3 )  1 m 2 
0~- - Or ~ r Or - ~ a - ~ a (6.3) 

We put A(t, r) = Al(t)A2(r) and obtain the ordinary differential equations 

d2A~ 
dt-'--- T- + X2AI = 0 (6.4a) 

dr -----5- + r ~ + ~A2 - + + A2 = 0 (6.4b) 

where k is a constant and k~ = h 2 - m21h 2. 
The first of the above differential equations has the usual solutions 

given by 

Al(t) = exp{ +_ikt} (6.5) 

and a regular solution at the origin for the differential equation (6.4b) is a 
multiple of the spherical Bessel function Jj+u2(kor) 

A2(r) = aJj+u2(kor) (6.6) 

where ot is a constant. 
Then, using (6.5) and (6.6), we get 

A(t, r) = ~t exp{ +iht} Jj.+u2(kor) (6.7) 

Introducing the above function in the second equation of the system 
(6.1 a), we obtain 

OB + = ot exp{ +_iM} [koJj_m(kor) + l ] _ m e 
Ot ih r Jj+ lcz(kor) (6.8) 

To solve this partial differential equation we use the method of  separation 
of variables. Introducing the function B(t, r) as a product B(t, r) = Bl(t)B2(r), 
we obtain 

dBl + m 
~ B1 - h exp{ +_iht} = 0 (6.9) 

B2(r) = ~ k0Jj-u2(k0r) + -r Jj+u2(kor) (6.10) 

where d is a constant. 
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Then from the above equations we obtain a regular solution at the origin 
for B(t ,  r) as follows: 

ck0 
B(t ,  r) - m l i h  + iX exp{-+iht} Jj-~rz(k0r) (6.11) 

Analogously, we solve the system (6. lb) and we obtain the solutions 

C(t,  r) = a exp{___i~/t} Jy_l/2(kor) (6.12) 

ako 
D(t,  r) = m l i h  +. iT exp[ +-iTt} Jj+l/2(k0r) (6.13) 

where a and T are constant. 
Finally, using (5.15), we obtain the solution of the Dirac equation in 

the flat space, 

+- = LB( t, r)Xmj-'r2J + L D~t, r)XT+,,2 J 
L,,+j 

(6.14) 

where the functions A, B, C, and D are given by (6.7), (6.11), (6.12), and 
(6.13) respectively and the xmi_+l/2 are given by 

l [-JJ" I, I (6.15) 
x;m+ I/2 = ~ L II'2YJ m J = ~ L I/2Yjm J 

Another particular case (stationary case) can be discussed in terms of 
the Etn(p) and Gtn(p) polynomials (Gomes and Capelas de Oliveira, 1996). 
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